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A one-dimensional point process with correlations constructed via a geo- 
metrical rule is shown to behave like a fluid at equilibrium. The equation of 
state is calculated and the "inverse problem" of finding an interaction 
potential underlying the system is considered. The effective potential is 
found to be dependent on macroscopic parameters via a dependence on the 
density of the system. 
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1. I N T R O D U C T I O N  

Given the interaction potential ~b(r), the standard methods of statistical 
mechanics allow in principle the calculation of an equation of  state via the 
partition function suitable for a given set of macroscopic parameters. This can 
actually be carried out exactly in one dimension. Suppose, however, that one 
does not know the forces, but that the statistical properties (such as particle 
correlations) of a system are somehow given. One question would be: What 
are the interactions (if any) that would give rise to the given statistical proper- 
ties for a system at equilibrium? And another is: What is the equation of 
state ? These questions fall under the so-called "inverse problem of statistical 
mechanics" that has occasionally been studied in the literature. For example, 
the problem of inverting the second virial coefficient to obtain the pair 
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potential has been consideredJ 1-3) Kunkin and Frisch (~ have found pair 
potentials and equations of state that would be consistent with certain 
"physically reasonable" choices of candidate pair correlation functions. 
However, one does not in general know what specific class of functions could 
serve as pair correlation functions to describe systems at equilibrium. There 
are no useful criteria that are specific enough to help construct analytically a 
particular nontrivial function which is guaranteed to be a pair correlation 
function for some potential. In fact, given a point process (with some physi- 
cally implied restrictions such as homogeneity, etc.) with correlations, it is not 
clear that it can always be identified with an ensemble describing an equi- 
librium system of particles with definite forces among them. It is only in the 
lattice case where it has been shown by Spitzer ~a~ that every reasonable two- 
valued process (so-called Markovian random fields) which can construct on 
the lattice corresponds to a Gibbsian ensemble for some pair potential. 

In this paper we use a method of geometrical construction to obtain a 
system with simple correlations and discuss to what extent it can represent a 
physical system. In Section 2 we obtain the equation of state, and in Section 3 
obtain the underlying potential and discuss its peculiarities. 

2. T H E  E Q U A T I O N  OF  S T A T E  

A way to obtain the equation of state purely from the statistical proper- 
ties of the point process defining the system while bypassing any specification 
of the interaction potential would be to calculate the probability Po(V) that 
a region of volume V will be found to be devoid of particles. Then for large 
enough volumes V, P o ( V )  can be identified with e -~pv (fl = 1 / k T ) ,  from 
which one can obtain the equation of state as 

tip = - lim (l /V) lnPo(V) (1) 
V .--~ or3 

The simplest example is when we have a Poisson distribution of points of 
density p, so that P o ( V ) =  e -pv ,  from which follows the ideal gas law 
[3p = p. 

The system we study below has very simple correlations by construction. 
It has the advantage that P0(V) is easy to calculate. The idea behind the 
construction is a variation of what can be found in a paper by Gilbert, <6~ where 
another mathematical model of a fluid is constructed via a procedure similar 
to the one used below. We start with a Poisson process of points along the 
infinite one-dimensional line (an ideal gas) with average density p. To every 
configuration X of these uncorrelated points we associate a configuration 
~" of correlated points according to the-following rule: A point x ~ X belongs 
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to ~" if and only if there exist no other points y e X , y  < x, such that 
x - y < ~, where a is some fixed length. In other words, given an equilibrium 
configuration of a one-dimensional ideal gas with average density p, we 
imagine a rod of length ~ centered at each of its points. We keep only those 
rods that do not overlap with another rod to the left of  them, and erase 
everything else. We are left with a configuration of rods with average density 
a = pe -pa and very simple correlations. Indeed, the joint probability 
o(2~(x~, x2) dx~ dx2 of a rod remaining at xl  and another at x2 is the same as 
the probability that there are no Poisson points in the interval (xl - a, x 0 
and that there is a Poisson point in the interval (x~, x~ + dx~), and similarly 
for x2 > xl. Thus 

p<2)(xl, x2) dxl dx2 = f ~e-~ dxl)(e-"~p dx2) [ ' o r  x 2 - -  x I ~ r 

for x~ - xl ~< 

and hence 

I1 ,  r > 
g(r)  = O, r <<. (2) 

Furthermore, gCn)(r 1 ,..., rn) = ~T"-lu=~ g~rr~+~ -- r~) also holds. One feature is 
that the system thus constructed has a maximum density ar~x = 1/e~r which is 
less than the maximum density of  a real, hard-rod system by a factor of  1/e. 
In general this occurs with other stochastic models similarly constructed, as it 
does with Gilbert 's (6~ model of  a fluid. Widom (v has also studied a stochastic 
model with a maximum density less than the hard-rod, close-packed density. 
He singles out this characteristic to emphasize the fact that the system thus 
constructed cannot be identified with a real, hard-rod system at equilibrium. 
It  seems plausible, however, that the set of  all configurations {~} constructed, 
together with the probabilities P ( ~ )  that are naturally attached to each, could 
correspond to the equilibrium ensemble {,r P} for some  real system whose 
interaction potential remains to be determined. This is the point of  view we 
pursue here. The interactions required to make {,r P} an equilibrium en- 
semble will be considered in Section 3. 

Given the above interpretation of our model we can determine a 
" thermodynamic  pressure" by Eq. (1). Calculation of Po(L) involves the 
consideration of all configurations in {~} consistent with having no particles 
in a region of size L, defined by one fixed particle centered at x = 0 and one 
centered at x = L. This can only be if all Poisson points falling inside this 
region are erased in accordance with our rule, i.e., each Poisson point falling 
in [0, L - ~) must have at least one other point to its left and within distance 
a. In particular the point at the origin must have at least one Poisson point to 
its right within distance tr. Now, the probability of  a configuration {q~ .... , qn} 
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o f  n o r d e r e d  P o i s s o n  po in t s  w i th in  a r eg ion  o f  l eng th  L - e is g iven b y  
p~e -p(L-~> dq~ . . . dq~ ,  so t h a t  P o ( L )  is given b y  

2 r~-~ r~" fo ~ 
Po(L) = e-  p,L- ~)p. [ dq,~ [ dq,_l . . ,  dql 

~ = 0  ~ 0  ~ 0  

x ~[~ - q~]E[~ - q2 + qd . . -~ [~  - q~ + q , - d  

where  ~[x] is the  s tep  f u n c t i o n  

1, x > 0 
E[x] = O, x ~< 0 

L a p l a c e - t r a n s f o r m i n g ,  we have  

P o ( L ) = e - ~  ~ o p = ( 1 - : - ~  

L e t t i ng  for  s imp l i c i t y  ( L  - cr)/~ - , ,  an  in teger ,  we have  

f 1 e_og}(.~ ) Po(v) = e - ~  _ o(1 - 

o-p~c ,o- l fN"  ( )n o e  "1, , = ~ ~ -~ /_, - -  , ,~+z~ l ,"  a)  
t,~=o ( s -  p) ) 

T h e r e f o r e  

(. n)  n 
= e -paY ~_, (--)n(pae-~ ~ e~ -- n] 

~=o n! 

Po( , )  = )__, ( - ) " [ ( ~ ) = / n ! l ( v  - n)" (3) 
n=O 

The  a s y m p t o t i c  b e h a v i o r  o f  P0(v) fo r  l a rge  v is d e t e r m i n e d  b y  the  l a rges t  po le  
o f  i ts  L a p l a c e  t r a n s f o r m  

~q~[P0(,)l(s) = 1/(s + ae -~)  (4) 

s ince P0(v) = Z~~ 1 R=(u), w h e r e  Rn(v) is the  r e s idue  o f  

eZW/(z + ae -z~ (5) 

L e t  z = - ~ ,  be  the  l a rges t  r o o t  o f  the  d e n o m i n a t o r  in (5), i.e., ~,e - ~  - a = 0. 
F o r  a a  < I /e ,  0 < y < l/or is a rea l  r o o t  w h i c h  is a s imple  po le  wi th  
the  r e s idue  e-V~/(1  - Vcr). F o r  ao  = I /e  we have  a d o u b l e  r o o t  a t  z = - 1/~ 
w i t h  the  r e s idue  2 ( ,  + �89 -v. T h e n  f o r ,  --> oe, Eq.  (1) a l lows  the  iden t i f i ca t ion  
p(a) = ~,(a); t h e r e f o r e  the  p re s su re  satisfies 

pe -"~ = a (6) 
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up to and including the maximum density. (We have set fl = 1.) The equation 
of state (6) can also be obtained by solving the integral equation 

fO, L ~< cr 
Po(L) l e - . ~  + fo e-"'Po(L - t )p  dt, L > ,; 

via Laplace transforms. (8~ The lower branch of (6) gives the pressure as a 
function of density. That ~ is the density in the thermodynamic sense, i.e., 
,~ = ( N ) / L ,  is shown in Section 3. Since ~ = pe -p~ by definition, we see that 
p = p (p ~< I/a) and Po(L) " e -pL for large enough L. So, in effect, the 
process of elimination of Poisson points leading to this model keeps the 
magnitude of the pressure constant while lowering the density. This can be 
interpreted as being due to the effective repulsive forces that must be intro- 
duced between the particles to account for the correlations. 

We can also obtain easily the virial expansion 

~p(~) = ~ (Z~-l/Z~)(~)~ = [ ~  + (a~)2 + ~(~)3 + ...] (7) 
l = 1  

which differs from the hard rod case beginning with the second virial co- 
efficient. The series (7) has the radius of convergence 1/e and it converges to 1 
there. Note that the inverse compressibility 

~(~p/~) = 0/~) ~ ( / ~ / / ~ ) ( ~ o ) '  
/ = 1  

also has the radius of convergence l/e, but it diverges there. This reflects the 
fact that for ea = I/e the system is jammed and can no longer be compressed. 
We can also derive the fugacity from O(ln z)/Op = l/a:  

l nZ  I V e ~ p  ( P )  P2-P~ - = d p =  = In + (p  - p o ) ' ~  + 
ZO " Po 

from which it follows that 

z = p exp{op + [(ap)2/2.2!] + [(ap)3/3.3!] + ... 

This compares with the expression 

z = pe  ~p 

for a real, hard-rod system. 
Concerning Eq. (6), we want to make one important point. I f  we were 

to blindly substitute the exactly known g(r)  into the compressibility equation, 
we would obtain for an equation of state 

p(~)  --  - ( 1 / ~ )  In (~ - ~a) 
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which is different from (6). But, as is shown by Widom, (9) this can only be the 
equation of state of  a system of particles with additive excluded volume; and 
this our system clearly is not. The resolution lies in the fact that as general as 
the compressibility equation is, it nevertheless does not hold for our model, 
because, as it will be shown in Section 3, the underlying potential depends 
explicitly on c~ (and hence the activity). In this connection we should point out 
that some of the unphysical results obtained by Kunkin and Frisch (4) on the 
basis of  perfectly reasonable assumptions are due to their use of  the com- 
pressibility equation in a situation where it does not apply. 

3. T H E  P O T E N T I A L  

We now come back to the first question we raised in the introduction. 
Namely, what are the interactions that account for the behavior of our 
system ? We can approach this problem via a consideration of the probability 
of  a given configuration of particles. We let PC'~(x~ .... , xu)dx~ . . .dxu  be the 
probability that exactly N particles will be found at (xl,  x~ + dxO, 
(x2, x2 + dx2) ..... (xN, xu + dxu) within a region L defined by two fixed 
particles at the origin and at x = L. Clearly P(")(xl .... , xu) = 0 whenever any 
of the Ix~ - x~_~[ ~ ,r. Otherwise, we have 

P(~)(xl ..... xN) dx l ' "  dxN = Po(~)(xl)e-~* p dxl Po(~)(x2 - xz)e-o .p  dx2 ... 

x Poc")(xN -- xN_z)e-Oap dXN Po(~)(L -- xz~) (8) 

where Po(~~ is as defined in Section 2. More explicitly 

S( '~)(x-  or)= ~',, ---jT-. (~a)J j ,  
Po(~)(x) 

I0, 

x > cr (9) 

x~<cr 

which is the function in (3), except that the upper index is now written in 
terms of the continuous variable x ([x] = largest integer ~< x). Equation (8) is 
just the probability that the region (0, xl - cr) is empty and that there is a 
Poisson point at (xl,  x l  + dx~) which is kept as a particle (this has probability 
e-Pap dxl),  etc. The product form is due to the especially simple properties of 
the underlying Poisson process (independence of events in nonintersecting 
intervals). 

Now, to make contact with statistical mechanics, we would like to make 
the following identification: 

P(~(xl ,  ..., xN) = zNe - v(xl ...... N~/E(z, L) (10) 
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where E = e pL is the grand partition function, so that we set 

zNe - v(xl ...... N )=  faNPo(~)(xl)Po(~)(x2 - x l )" 'Po(~) (xu  - xlv-1)Po(~)(L - xN) 
E(z(a), L) [ 0  if any Ixi - x~_~] ~ 

(11) 

It is understood that this identification holds asymptotically in the limit of 
large L. It is now evident that the interaction potential U ( x l ,  ..., XN) is a sum 
of nearest-neighbor pair interactions q~(~)(x), where ~(~)(x) has a hard core of 
size e, and, as the superscript indicates, it is an effective pair potential 
explicitly dependent on the macroscopic parameter a. [In fact it must also be 
proportional to fl to explain why no temperature dependence appears in the 
right-hand side of (1).] To obtain ~v(~)(x) explicitly, set N = 2 in Eq. (1 l); 

s i n c e z a n d E  are known,~ois determined (i .e. ,r  = - l o g [ ( z ) e P * P o ( x ) ]  ) .  

From (11) let us calculate the probability P(~)(N, L)  that a region of size 
L will contain exactly N particles. This is 

P(~)(N, L)  = a N dxu  dxN_l  ... dx2 dx l  
a N -- 1 )a  a 

x Po(~)(xl)Po('~)(x2 -- Xl)...Po(~)(XN -- X~_I)Po(~)(L -- XN) (12) 

With a change of variables yj = x i - j a  we have 

/ ,L  - (N + 1 )a  YN Y3 Y2 

x Po(~)(yl + cOPo(")(ye - Yl  + a), . .  

Po(~)(YN - Yzr + a)Po('~ - YN + a) (13) 

or from Eq. (2) 

P(~)(N, L) = aN[S (") * S (~) �9 ...* S(~)](L) (14) 

contain the (N + 1)-fold convolution of S ( x )  and where the brackets 
[ , = L -  (N+ l)cr. 

N o w ,  

e _ t a  s 

~[S(~)(y)](s) = ( -y ,~J  sj+l 
Y=O 

Then 

5f '[P(~)(N'L)](S)  = aN 1 ( = ( - - ) ' a ' t - - -~ ) ) "  [ e - ~  

= ( - ) [  k ~ 
(15) 
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and 

o r  

p(,~)(N,~) = a N ~ (_)~(N+k) (L-ak) N+k 
(16) 

E(L-(N+I)~)m [L - (N + k + 1)o'] N+k (17) 
P(~'(N, L) = a N ~, ( -)ka~ N ! k! 

k = O  

We observe that 

E(L-~)m~ P(N) = t(L~)J/~ . t ( ( L - ~ ) - m a  N (__)%e~ [ L -  (N N! + kk! + 1)a]N+k 
N = 0  N=O k = 0  

[ ( L - a ) / a l  [ (L -a ) la]  = ~ ~ (_)M_N~M[L-(N+k+ 1)~1 M 
N=O M=N N! (M - N)! 

t(L-,,)/o1M=O ~'~ (--)MaM (L -- a --.i Ma)M N~=O (--)N( M)N 

but ~M=o (--)N(g) = 0 for all M 1> l, implying that ~ff=oP(N) = 1, as it 
should. We can also see that 

[(L~)/a] 
( N )  = NP(N) 

N = O  

= ~ (--)MaM -M--~. (--)NN 
M = 0  N = 0  

= a ( L  - 2 . )  

since ZM=0 (--)NN(M) = 0 for all M/>  2. Therefore for large enough L, we 
have 

a = (N) /L  

the thermodynamic density, as expected. 
Our task is now to show that the interaction potential depends on the 

activity z, thus explaining why the usual compressibility equation would not 
yield the correct equation of state. Since z is a function of a, it is enough to 
show that the potential depends on ~. Indeed, with a(p) and z(p) obtained in 
Section 2, an application of Lagrange's theorem yields a(z) = ~.2o= 1 c S  with 

1 1 c , = ~  ~ (_)M __ (18) 
~ = M  i1! k=2 i~1 

Ek~k = j - - 1  

To check for any a dependence in U(x~ ..... xN) of (10), we consider the 
expression 

E(z, L)P(N, L)/z N = Z(N, L)/N! 
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Since ordinarily the right-hand side cannot depend on z, 

O (E(z, L)P(N, L)) 0 
Oz z u 

holds identically. Below we show that this derivative does not vanish identi- 
cally in our case. With (Oz/coa) # O, it is enough to show 

co {eP(,)W(")(N, L)] 

identically, where we have substituted E(z(a), L) = 1/Po(L) = e p(~)~ as found 
in Section 2. In the differentiation we make use of  the relation 

COP(~)(N, L) = Np(.)(N, L) - (N + 1)P(")(N + 1, L) (19) a ~ a  

which can be easily derived from (17). We have 

CO 
CO--~ [(z(a))- Nep(~)LP(~)(N, L)] 

_ ~N ~Sa/{~---Z]eP('~)LP(~ (~_~)ep(~)Lp(~)(N,L) 

eP(~)L 
- -  [NP(~)(N, L) - (N + 1)P(~)(N + 1, L) (20) + zNa 

But Dz/COa = (z/a) Op/~a. Then Eq. (20) becomes 

From the behavior of cop/~a as found in Section 2 we see that there are N and 
L that make the first bracket negative for a such that 

a < e-P~)ff/~ < N / L  < 1/~ 

Also, the second term is necessarily negative by virtue of  the meaning of  
P(N + 1, L). Therefore we have shown that (CO/Oz)[EP(~)(N,L)/z N] is not 
identically zero. 

We have found that the forces among the particles in this model cannot 
really be described in purely microscopic terms. The effective potential does 
not seem to be the net result of two-body, three-body, etc., forces depending 
only on the particle coordinates. Despite this, in the infinite volume limit the 
system behaves like a perfectly reasonable thermodynamic system. In con- 
clusion, we would like to suggest that the class of systems of interest to 
statistical mechanics is perhaps larger than those that are specified via any 
set of interaction potentials. We are presently engaged in studying other 
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stochastic models both  in one and two dimensions, and are hopeful o f  finding 
interesting macroscopic behavior  o f  physical significance (e.g., phase transi- 
tions). For  the particular model studied above, our  conjecture is that  any 
direct two- or three-dimensional analog of  it would also lead to a smooth  
pressure versus density curve defined up to a maximum density, i.e., quali- 
tatively the same as in one dimension. 
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